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Boundary-layer receptivity for a parabolic 
leading edge 

By P. W. H A M M E R T O N  f' AND E. J. K E R S C H E N  
Department of Aerospace & Mechanical Engineering, University of Arizona, Tucson, 
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(Received 10 July 1995 and in revised form 5 November 1995) 

The effect of the nose radius of a body on boundary-layer receptivity is analysed 
for the case of a symmetric mean flow past a body with a parabolic leading edge. 
Asymptotic methods based on large Reynolds number are used, supplemented by 
numerical results. The Mach number is assumed small, and acoustic free-stream 
disturbances are considered. The case of free-stream acoustic waves, propagating 
obliquely to the symmetric mean flow is considered. The body nose radius, r,,, enters 
the theory through a Strouhal number, S = or , /U,  where w is the frequency of the 
acoustic wave and U is the mean flow speed. The finite nose radius dramatically 
reduces the receptivity level compared to that for a flat plate, the amplitude of the 
instability waves in the boundary layer being decreased by an order of magnitude 
when S = 0.3. Oblique acoustic waves produce much higher receptivity levels than 
acoustic waves propagating parallel to the body chord. 

1. Introduction 
The receptivity process through which free-stream disturbances generate instability 

waves in boundary layers was first discussed by Morkovin (1969). The transfer of 
energy from the free-stream disturbance to the instability wave generally comes about 
through non-parallel mean flow effects, which may arise either in the leading-edge 
region, or in a localized region farther downstream in the boundary layer (Goldstein 
& Hultgren 1989; Kerschen 1990). 

Up to now, theoretical studies of leading-edge receptivity have been restricted 
to a semi-infinite, zero-thickness plate. Goldstein (1983) developed an asymptotic 
analysis for this problem; leading-edge receptivity coefficients for various free-stream 
disturbances were calculated by Goldstein, Sockol & Sanz (1983) and Heinrich & 
Kerschen (1989). However, aerodynamic bodies designed for subsonic flow generally 
have finite thickness distributions with a parabolic leading edge. In the present paper, 
we examine the influence of the thickness of a body on leading-edge receptivity. 
The body is assumed to be two-dimensional, with a symmetric cross-section and a 
parabolic leading edge. An asymptotic theory for the case of a symmetric mean flow 
is developed in this paper. Results are presented for receptivity to acoustic waves in 
the free stream, incident on the body at arbitrary angle. Attention is focused on the 
variation of the receptivity level with the nose radius of the body and the incidence 
angle of the acoustic field. 
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In $2, a high Reynolds number asymptotic analysis (e6 = v w / U : ;  eG1)  is for- 
mulated for an incompressible, two-dimensional flow. This follows the approach of 
Goldstein (1983) but remains valid for a nose radius comparable to the free-stream 
disturbance length scale UJo. Here U, is an effective free-stream speed, defined in $2, 
which includes a correction to the free-stream velocity due to the flow perturbation 
created by downstream portions of the airfoil. Two streamwise regions enter the 
analysis, one region where the distance downstream is O( UJo) and the disturbance 
is governed by the linearized unsteady boundary layer equation (LUBLE), and a 
second region at distances 0 ( ~ - ~ U , / w )  where the disturbance is governed by the 
triple-deck structure, corresponding to the asymptotic form of the Orr- Sommerfeld 
equation (OSE) in the vicinity of the lower branch. 

The structure of the solution in the LUBLE region is analysed in 93. The inviscid 
pressure field and slip velocity induced by the free-stream disturbance (analysed in 
$4) drive the unsteady motion in the boundary layer. Far downstream in the LUBLE 
region, the solution consists of a Stokes wave, and a set of asymptotic eigensolutions 
that contain velocity but not pressure fluctuations. These asymptotic eigensolutions 
are equivalent to those obtained by Lam & Rott (1960) and Ackerberg & Phillips 
(1972), but modified to include the effects of the mean pressure gradient and surface 
curvature. The asymptotic analysis for distances far downstream determines the form 
of the eigenfunctions, but not their coefficients C,. These coefficients can be found 
only through a full solution of the LUBLE, which must be determined by numerical 
methods. Lam & Rott (1993) have recently generalized their eigenfunctions to take 
account of arbitrary streamwise variation in the mean flow. The direct development 
in parabolic coordinates presented here is more convenient for our purposes, but it 
can be shown that our expressions for the eigenfunctions are in agreement with these 
more general results. 

The wavelengths of the asymptotic eigenfunctions shorten progressively with dis- 
tance downstream. Eventually, the self-induced pressure field associated with the 
displacement thickness of each asymptotic eigenfunction becomes significant, and the 
triple-deck structure replaces the LUBLE as the correct asymptotic approximation 
to the Navier--Stokes equation. The first asymptotic eigenfunction of the LUBLE 
matches on to the Tollmien-Schlicting wave solution of this triple-deck region. Thus, 
the form of the free-stream disturbance and the geometry close to the nose influence 
the amplitude of the Tollmien-Schlicting wave only through the coefficient C1 of the 
first asymptotic eigenfunction. Therefore, we call C1 the ‘Receptivity Coefficient’. The 
primary objective of this paper is to determine the receptivity coefficient as a function 
of leading-edge geometry and free-stream disturbance characteristics. 

For the flat-plate case, it is not clear whether the set of eigensolutions obtained by 
Lam & Rott are complete. A second, very different set of eigensolutions was obtained 
by Brown & Stewartson (1973) which, they argue, better represent the physical 
properties of the flow. While the relationship between these two sets is a fundamental 
question which deserves further study, this must first be done in the context of the 
flat-plate problem. For a parabolic body, generalizations of the Brown & Stewartson 
eigensolutions should also exist, but we concentrate solely on the generalizations of 
the Lam-Rott solutions since it is demonstrated in Appendix B that they match 
naturally to the Orr-Sommerfeld modes further downstream. 

In $4, the inviscid pressure field and slip velocity produced by the interaction of 
a free-stream acoustic wave with an airfoil are determined. The exact form of the 
unsteady slip velocity in the vicinity of the leading edge is determined by the global 
solution about the airfoil. This depends on the magnitude of the reduced acoustic 
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FIGURE 1. An illustration of the physical situation of interest: a thin, symmetric airfoil of chord 2b 
is at zero angle-of-attack in a uniform flow of speed U,, with a plane wave incident at an angle 6 
with respect to the airfoil chord. 

frequency k = ob/c ,  where b is the airfoil semi-chord and c is the speed of sound. 
Here we present results for the limiting cases k + l  and k + l ,  when relatively simple 
expressions for the slip velocity can be obtained. Numerical solutions of the LUBLE 
are then carried out in $5, and comparisons with the asymptotic eigenfunctions of $3 
are utilized to determine the receptivity coefficient C1 as a function of S = o r n / U e  
and characteristics of the free-stream acoustic wave. The analysis presented is for 
S = O(1); the only restriction is that S Q C ~ ,  so that the unsteady disturbance in the 
nose region is governed by the LUBLE. 

2. Formulation 
We consider a thin, symmetric airfoil of chord 2b at zero angle-of-attack in a 

uniform flow of speed Urn. A plane acoustic wave of frequency cr), propagating at 
an angle 8 with respect to the airfoil chord, is assumed to be incident on the airfoil 
as illustrated in figure 1. Two-dimensional, low Mach number flow is considered. 
Since the Mach number is small, the mean flow can be analysed using incompressible 
theory. For the unsteady component of the flow, most features of interest can also be 
analysed with incompressible theory. The influence of compressibility on the unsteady 
component of the flow is discussed in $4. The Reynolds number is assumed large, 
so the flow field is inviscid and irrotational everywhere except in the vicinity of the 
airfoil surface. 

2.1. Inviscid outer $ow 
Introducing Cartesian coordinates (x, y )  normalized by the airfoil semi-chord b, with 
the origin located at the airfoil leading edge, the airfoil shape is given by 

y = f d s ( x ) ,  0 6 x 6 2  (2.1) 
where s (x) is the non-dimensional thickness distribution of the airfoil and the thick- 
ness parameter d e l .  The airfoil is assumed to have a rounded leading edge and a 
sharp trailing edge. The dimensional complex potential W for the steady, inviscid 
flow past the airfoil is given by thin-airfoil theory, 

W = Urnb [z + dilg ln(z -xl)dxl  + 0 ( h 2 )  , 1 
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where z = x + iy and the dimensional velocity (u ,v)  is given by u - it] = b-’d W/dz. 

expansion of the thickness distribution has the form 
For an airfoil with a rounded leading edge of radius r,, the small-argument 

s (x) = s1 + s2x + s3x3’2 + O(x2) (2-3) 

where s1 = (2rn/62b)’’2. The coefficient of the leading term in (2.3) must be O(1), 
implying that r ,  = O(6’b). The thin-airfoil expansion (2.2) is invalid in the vicinity 
of the leading edge, and must be replaced by a local expansion (Van Dyke 1964a, 
Chapter 4). The natural length scale for this local expansion is the airfoil nose radius 
r,. Introducing a parabolic coordinate system (t, i j )  in the local region, with r ,  as the 
length scale, 

1 r ,  
X +  iy = -- [ ( f  + iq) ’ + 11 , 2 b  

the airfoil surface is given by ?j = 1 + :6s2f3/(l + 4’) + 0(S2). Thus, at leading order 
in the local coordinates, the airfoil surface is defined by the parabola q = 1. 

The complex potential describing the leading approximation to the steady, inviscid 
flow in the vicinity of the airfoil nose is 

W = i U , r , ( f + ’  1(Y - - I))’? (2.5) 

leading to a slip velocity, U , t / ( t 2  + l)”*, where the constant Ue is determined by 
matching with the thin-airfoil expansion (2.2). For leading-edge shapes that contain 
a wedge component (s2 # 0), the approximation (2.5) is valid only at 0(1) in the 
thickness parameter 6 and matching with (2.2) then shows that U, = U,. However, 
for leading-edge shapes in which the S1/2 multiplies a locally analytic function of x, 
the even coefficients in (2.3) vanish. The Joukowski airfoil is one example of such an 
airfoil. In this case the leading-edge region is also parabolic at O(6), and the matching 
then gives 

The O(6) term in (2.6) is essentially a correction to the ‘free-stream speed’ in the local 
leading-edge region, due to the flow perturbation created by downstream portions of 
the airfoil. 

The scattering of the acoustic wave by the airfoil produces an unsteady perturbation 
to the inviscid, irrotational flow described above. This unsteady, inviscid perturbation 
is considered in $4. The slip velocity and pressure associated with the inviscid flow 
drive the viscous flow in the boundary layer adjacent to the airfoil surface. 

2.2. Boundary-layer flow 
The boundary-layer flow in the vicinity of the leading edge is also analysed most 
conveniently in parabolic coordinates. Although the nose radius r ,  is the most natural 
length scale for the steady flow, the length scale UJcu is more convenient for analysis 
of the unsteady flow. Thus, we introduce new coordinates, 

where 
wr s=’1 
u, 

is a Strouhal number based on the airfoil nose radius. 
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The flow around the body is analysed in terms of the incompressible vorticity 
equation. Utilising U,  for the velocity scale, U e / w  for the length scale and 0- l  for 
the time scale, the non-dimensional form of the vorticity equation is 

where g is the stream function, the velocity is given by u = h - ' ( g q e ~  - pzeq), where 
ez and eq are unit vectors in the 5 and q coordinate directions, respectively, and the 
metric coefficient h = (t2 + Fj2) ' '2 .  The vorticity -a is related to the stream function 
by a = h p 2 ( q z ~  + gQii). The small parameter 

(2.10) 

is the reciprocal of the Reynolds number based on the disturbance length scale. The 
flow satisfies the no-slip boundary conditions on the body surface, 

p = p- r -  - 0  on 4 =s'/2, (2.11) 

where terms of higher order in S have been neglected. The analysis presented here 
considers the small-e limit but with S = O( 1). 

Since the Reynolds number is assumed large, viscosity is important only in a thin 
boundary layer adjacent to the body surface. To analyse the boundary-layer flow, we 
set 

q-s  1/2  - - E y ,  3 t=c,  F=f3!P. (2.12) 
The incompressible vorticity equation, expressed in terms of the stream function, then 
becomes 

a(yY,,lH2, 'u) -- YJ,,,, 
%lt + a(t7 Y)  H2 

where H = ( r2  + S)'/ ' .  This equation is exact, except for the approximation that 
h = H in the boundary layer. Careful consideration of the asymptotic structure, at all 
stages of the evolution of the disturbance, shows that the correction term O(e3y iT2)  
never becomes significant and hence it is dropped throughout this presentation. At 
large values of q ,  the boundary-layer flow matches to the inviscid slip velocity, 

H - ' Y ,  -+ U,(( , t )  as y + m. (2.14) 

For 0(1) values of l ,  the terms on the right-hand side of (2.13) can be neglected, 
leading to the unsteady boundary-layer equation. The unsteady component of the 
flow, a small perturbation to the mean flow, then satisfies the linearized unsteady 
boundary-layer equation (LUBLE). The LUBLE region is considered in the fol- 
lowing section. However, the solution of the LUBLE contains components whose 
wavelengths progressively shorten with distance downstream. When 5 = O(e-'), 
terms on the right-hand side of (2.13) become significant and the correct asymptotic 
approximation to (2.13) has the triple-deck structure. The structure of the developing 
boundary layer is summarized in figure 2. The asymptotic matching of the two 
streamwise regions is discussed briefly at the end of 93. 
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FIGURE 2. A schematic illustration of the boundary-layer structure for a body with a parabolic 
leading edge in a symmetric mean flow. The three decks in the Orr-Sommerfeld region are (i) the 
viscous wall layer; (ii) the main inviscid layer; and (iii) the outer irrotational layer. 

3. Unsteady boundary-layer region 
In this section, we consider (2.13) for O(1) values of t in the limit t. -+ 0. 

Subsequently, the behaviour of this solution at large values of 5 will be considered, 
in anticipation of matching with the Orr-Sommerfeld region that exists farther 
downstream in the boundary layer. For ( = O(1) and .e + 0, the terms on the 
right-hand side of (2.13) can be neglected. Integrating once with respect to q then 
gives the unsteady boundary-layer equation 

H2!Pqr + (!Pq!Ptq - Yq,Yt) - tH-2YY42 - Yqqq = -H2P< (3.1) 

where the pressure gradient Pt(5,t) is obtained by matching to the outer (inviscid) 
flow, 

In this paper, we consider uncambered airfoils at zero angle-of-attack to the mean 
flow. The slip velocity in the region of the parabolic nose is then given by 

(3.3) 
5 

Us(t,t) = + Us(0e-lt, 

where the steady contribution follows from (2.5), while the time-dependent perturba- 
tion depends on the particular form of the free-stream disturbance, as discussed in 
$4. Since the velocity field associated with an acoustic wave is of very small ampli- 
tude compared to the mean-flow speed, we assume that the amplitude scale factor 
A G l .  The steady and unsteady components of the flow field can then be analysed 
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separately. Thus, the stream function within the boundary layer can be written in the 
corresponding form 

where extraction of the factor 5 from the mean-flow component is motivated by the 
form of (3.3). The function $(<, q )  describing the steady boundary-layer flow satisfies 

!P = i"4(i", q )  + v(t, q)e-if, (3.4) 

with boundary conditions 4 = 4,, = 0 at q = 0 and -+ 1 as q -+ 00. It may be 
observed that written in this form the stcady equation involves S and hence it appears 
that the steady flow is dependent on co, the frequency of the unsteady perturbation. 
However, w also enters the scaling of the streamwise coordinate [. Re-writing (3.5) 
in terms of 4 = s-'/'t, 

( 3 . 4 )  
-2 -1 

it is seen that the steady flow is indeed independent of co. 

unsteady boundary-layer equation (LUBLE), 

4v11v + 4w4 + t(4rl,,4< - 411442) - (1  + i" ) (4v2 - 1) = 0, 

The time-dependent contribution to the boundary-layer flow satisfies the linearized 

J 
(3.7) 

with boundary conditions 

y =y+  = O  at q = O  and yq -+ Hu, as q m. (3.8) 

These equations must be solved numerically; the methods used are described in 
45. However, as discussed in $1, we are primarily interested in the component of 
the unsteady field that, in the large-t limit, matches onto the Tollmien-Schlichting 
wave solution of the Orr-Sommerfeld equation. In the following two subsections, we 
develop large-[ asymptotic solutions for the steady and unsteady components of the 
flow. For convenience, in the rest of this section we restrict attention to the upper 
surface of the body (i.e. 5 > 0). Corresponding results for 5 < 0 can be obtained by 
inspection. 

3.1. Steady boundary-layer equation 
In order to analyse the large-[ behaviour of the unsteady flow, the asymptotic form 
of the steady flow is required. The expansion for the steady flow is most naturally 
developed in terms of the streamwise coordinate scaled on the body nose radius, 4, 
as defined in (2.4). Far downstream of the nose (<%l), the pressure gradient for the 
steady flow past a parabola decays to zero and hence the mean flow approaches the 
flat-plate solution. The asymptotic form of the solution is given by Van Dyke (1964b), 

In 5' 1 
4(5,Y) - F ( q )  +AlGl(V),- + (BlGl(V) + G2(V))T, (3.9) 

5 t 
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where F ( q )  is the Blasius function, G l ( q )  = gF’(y) - F(q) ,  A1 and B1 are as yet 
undetermined numerical constants, and Gz(q)  satisfies 

G;”+FG:+2F’G;-F”G2 = F’2-1+22A1FF”, G2(0) = G;(O) = Gi(0) = 0. (3.10) 

The value of A l  is fixed by the physical requirement of exponential decay of vorticity 
at the outer edge of the boundary layer. Hence G2(q) must decay exponentially 
for large r ,  which gives Al = 0.60115. The value of B1 cannot be determined by 
the large-< analysis since f - * G l ( r )  is an eigensolution of the perturbation equation. 
The next term in the expansion is O(t-”), CI = 3.774, the fractional power arising 
as the next eigensolution of an infinite sequence (Libby & Fox 1963). It appears 
that B1, together with the set of similar constants appearing in higher-order terms, is 
dependent on conditions close to the nose of the body and hence can be determined 
only by numerical integration from 4 = 0. This we discuss in $5. 

The next four ignored terms in the expansion are of order 5 , 5 In 5 ,  5 In f 
and Zp4. As we will demonstrate in due course, the fact that these terms are of 
similar magnitude until f is extremely large poses certain problems in the numerical 
treatment of the problem. In developing the solution to the LUBLE, the limiting 
behaviour of the steady flow close to the surface is required. This is found to be 

--3.774 --4 2 - --4 

where Uh = F”(0) = 0.4696. 

3.2. Linearized unsteady boundary-layer equation 
We now consider the evolution of the unsteady perturbation to the mean flow, 
which is governed by (3.7). Far downstream (<+l), the unsteady component of the 
stream function consists of a particular solution, yp ,  determined entirely by the local 
conditions far downstream, together with a set of asymptotic eigensolutions, 

Y ( %  <; S) = YP(Y, 5 ; S )  + c CI(S)Yd?, 5 ; S ) .  (3.12) 

The particular solution is a generalization of the classical Stokes layer solution, driven 
by the local value of the unsteady pressure gradient (3.7), see Lighthill (1954) for 
details. The eigensolutions v L  depend on the geometry of the body far downstream, 
but are independent of the local free-stream disturbance. These eigensolutions are 
generalized forms of the eigenfunctions found by Lam & Rott (1960) for the flat- 
plate boundary layer, taking account of the non-Blasius mean flow. The coefficients 
C, multiplying the asymptotic eigenfunctions are determined entirely by conditions 
close to the leading edge ( 5  = O(1)). One of these eigensolutions, which we label 
y1, matches on to the Tollmien-Schlichting wave in the Orr-Sommerfeld region 
farther downstream, where 5 = O(e-I). Thus, it is only through the coefficient C1 
that the unsteady disturbances in the free stream influence the amplitude of the 
Tollmien-Schlicting wave. 

Our primary interest is in the relationship bctween the free-stream disturbances and 
the amplitude of the Tollmien-Schlichting wave. Thus, we focus on the asymptotic 
eigensolutions of the LUBLE. Guided by the results for the flat-plate case (Goldstein 
1983), we anticipate the development of a two-layer structure for (91, consisting of 
a main layer where q = O(1) and a new inner layer of width O(5-l). 

I 
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3.2.1. Inner layer 

becomes 
Introducing an inner variable m = <q, the homogeneous form of the LUBLE then 

--3.774 
where it follows from (3.9) that y ( < )  = 1 + 2A1 In</<' + B1/<' + 0(( ). The 
regular perturbation solution to (3.13), for large 5, leads to solutions related to the 
particular solution y p .  Thus, the asymptotic eigensolutions must arise as a balance 
between the highest m-derivative (i.e. wall-normal derivative) and the terms involving 
[-derivatives. It is then clear that the eigensolution must contain a factor exp( T(5))  
and it is for this reason that the higher-order terms containing derivatives with respect 
to 4: have been retained in (3.13). 

Writing y = exp( T ( c ) ) f ( t ,  M ) ,  where a new boundary-layer variable M = m( 1 + 
S/2t2) has been introduced to simplify the solution, f (  4, M )  satisfies 

where r ( f )  = y(i'y) - 3 / 2 t 2  and 

UA2M3 d T  SM d T  
( M f ~ - 4 f ) - - - ( M f ~ - 2 f ) .  (3.15) _________ 

4! l 2  d t  2 t 2  d5 

If dT/dc is set equal to -At2/Uhr, where /1 is an eigenvalue to be determined sub- 
sequently, solution to the leading-order equation immediately follows using separation 
of variables, 

y - Dt2'eT(4) [P(iM) + 5 p 3 q ( ~ )  + . . .I. (3.16) 

Here D is an arbitrary constant whose value is chosen for convenience later, and z is 
a constant that is determined at a later stage of the analysis. The exponent T(5) is 
then determined by integrating the large-[ expansion of 12/r ( 4/S1/2). This exponent 
can be separated into two components, T = T(O) + T('), where 

is large for large t and hence must be included in the leading-order form of the eigen- 
solution, while the terms in T(')(<) are small for 5+1 and thus could be considered as 
algebraic correction terms rather than as exponential amplitude functions. The first 
few terms in T( ' )  are of the form 

where the coefficients bi are determined by the higher order terms of (3.11). 
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The leading-order mode-shape function p(M) satisfies the differential equation 

W P )  = 0, (3.19) 

where the operator 2’ is defined by 

2 ( p )  = p”’ + ip’ + A(Mp’ - p ) ,  (3.20) 

with p’ = pM, etc. The boundary conditions at the wall are 

P(0) = P’(0) = 0, (3.21) 

and matching to the main layer requires that p” -+ 0 as M .+ a3 so as to avoid 
exponential growth of the inner solution. The differential operator and boundary 
conditions are homogeneous and thus form an eigenvalue problem for A. Tn fact, the 
leading-order equation is identical to the flat-plate equation, the effect of curvature 
having been absorbed into the boundary-layer variable M .  Thus p ( M )  and the 
value of the eigenvalue ,i = e-1z/4p-3/2 can be obtained immediately from Goldstein 
(1983) as 

U b j M ( M  - &f)Ai(E)d&f 

lSAi( i )dM 
P(M)  = > = e - 4 4 p - 1 / 2 f i  - p, (3.22) 

where p is a solution of A?(-p) = 0. An infinite set of such roots ( p 7  > 0) exists, with 
corresponding mode-shape functions pi( M ) .  

The value of z for each eigensolution, v, is then determined by a solvability 
condition on the O(t-3) correction to the mode shape, q(M) .  This function satisfies 

m q )  = B(P), (3.23) 

where 

SAM ( M p ’  -4p) + 7 ( Mp’ -2~). (3.24) 
9 ( p )  = 2zu~(Mp’-”1(M*p’’-2~~’)--- Ub UbM3 

4! 2% 
The boundary conditions at the wall and the matching condition to the main layer 
are the same as for p ( M ) .  Integrating by parts and using the boundary/matching 
conditions on p and q gives the relation 

rv3 Pv3 

(3.25) 

the right-hand side vanishing by virtue of (3.19). Hence t is determined by the 
condition i* p”’W(p)dM = 0. (3.26) 

This gives t = do) + ST(’), where do) is the flat-plate value and 

(3.27) 

It should be noted that this result does not involve linearization in S, but is valid for 
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S = O(1). By suitable change of variables, this can be re-cast into the form 

(3.28) 

where expressions for the integrals J, = S_",(z+p)"[Ai(z)12dz are given in Appendix A. 
Similarly, the expression for do) (Goldstein 1983) can be expressed in terms of p ,  
avoiding the need for numerical evaluation of the integrals, 

(3.29) 

The value of zi for each eigensolution is obtained by substituting pi into (3.28) and 
(3.29). Finally, we set the value of the arbitrary constant in (3.16) to D = 2 P  so that, 
in the limit S -+ 0, our expression for the asymptotic eigenfunction reduces to the 
result given by Goldstein (1983). 

3.2.2. Main layer 

In the main part of the boundary layer, where y = O(1), the unsteady motion is 
essentially an inviscid response, driven by the displacement thickness of the inner 
layer. Setting y = (t2/2)" exp( T ( t ) ) g ( t ,  y )  and substituting into the homogeneous 
form of the LUBLE, g(<,y) is found to satisfy 

Solving, and matching to the inner layer then gives 

(3.31) 

3.2.3. Large-< matching 

In Appendix B it is shown that it is the first asymptotic eigensolution which matches 
on to the Tollmien-Schlichting wave that becomes unstable farther downstream. In $5, 
numerical solutions of the LUBLE are compared to the first asymptotic eigenfunction, 
in order to extract the receptivity coefficient C1. The two most convenient points 
of comparison are the wall shear and the displacement thickness of the boundary 
layer. The wall shear is determined by the solution in the inner layer. However, 
for comparison with numerical solutions, it is most convenient to express the wall 
shear in terms of a derivative with respect to y. Rewriting (3.16) in terms of y and 
evaluating yvv at y = 0, the contribution to the wall shear due to the asymptotic 
eigensolution yi is 
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Taking the first root of A?(-p) = 0, namely pI = 1.01879, and evaluating the 
numerical coefficient, the wall shear for the first asymptotic eigensolution is 

where T;O'(<) is given by (3.17), Ti1'(<) is a small correction term given by (3.18) and 

TI = -0.69213 - S 1.9878 i. 

The contribution to the displacement thickness due to an asymptotic eigensolution is 
obtained from the solution in the main layer, 

(3.34) 

where the result for the first asymptotic eigensolution y1 follows by substituting PI 

and 71. 

Since T K t3 at leading order, the wavelengths of the asymptotic eigenfunctions 
decrease with distance downstream, increasing the importance of longitudinal deriva- 
tives. The LUBLE (3.1) is obtained from (2.13) by neglecting higher-order derivatives 
with respect to 5. Thus, although the asymptotic eigensolutions derived in this section 
are uniformly valid solutions of the LUBLE as < t co, they are not uniformly valid 
solutions of the full linearized Navier-Stokes equation. 

Terms on the right-hand side of (2.13), which were neglected in the LUBLE, become 
significant when < = O(E-'). An irrotational layer outside the mean boundary layer, 
driven by the oscillating displacement thickness of the eigensolutions, must then 
be considered, and the associated pressure gradient appears in the leading-order 
equations governing the inner layer. This coupled viscous-inviscid interaction has the 
triple-deck structure, corresponding to the small-e asymptotic approximation to the 
Orr-Sommerfeld equation in the vicinity of the lower branch. The development of 
the boundary-layer structure was summarized in figure 2. A complete treatment of 
the linear development of the instability would require an asymptotic solution for the 
Tollmien-Schlichting wave of the Orr-Sommerfeld equation, taking account of the 
surface curvature and non-zero pressure gradient. This Tollmien-Schlichting wave 
solution could then be matched to the first Lam-Rott asymptotic eigensolution of the 
LUBLE, as was done by Goldstein (1983) for the flat-plate case. However, for O( 1) 
values of S, with e and 6 of the same order, the Orr-Sommerfeld region is influenced 
by the full airfoil thickness distribution, necessitating a general development that does 
not seem justified in the present context. For flow around a semi-infinite parabolic 
body, we verify in Appendix B that the eigensolutions obtained here do indeed match 
on to the Tollmien-Schlichting wave. 

In this paper we restrict ourselves to examining only the receptivity process, that 
is, the determination of the coefficient C1 of the first eigensolution, which matches 
to the unstable Tollmien-Schlichting mode. The remainder of the paper is concerned 
with obtaining the receptivity coefficient for different free-stream disturbances. This 
is accomplished by comparing numerical solutions with the asymptotic solutions 
obtained above. 
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4. Free-stream disturbances 
In this section we consider the inviscid flow field produced by the interaction of 

a free-stream acoustic wave with the airfoil. The acoustic wave is assumed to be 
incident on the airfoil at an angle 8 with respect to the airfoil chord, as illustrated 
in figure 1. The slip velocity and surface pressure fields generated by this interaction 
drive the unsteady motion in the boundary layer, leading to the generation of a 
Tollmien-Schlicting wave. 

For a low Mach number flow, the acoustic wavelength 2nc/w is long compared to 
the hydrodynamic length scale U w / w .  Thus, outside the boundary layer, the unsteady 
flow in the vicinity of the leading edge is incompressible and irrotational. Potential 
flow theory then shows that this local flow has the form 

(4.1) 
5 1 

u,( t )  = k-,(e)- + K,(e) - - .  H H 

Here 5 / H  and 1/H correspond to purely symmetric and antisymmetric flow about the 
leading edge, respectively. The coefficients K ,  and K ,  multiplying these eigenfunctions 
are independent of the nose geometry, but depend on the free-stream disturbance, 
being determined by global features of the unsteady flow. Substituting (4.1) into (3.7) 
gives 

Hence, writing y = K,Y, + ~ ~ y ~ ,  it follows that the receptivity coefficient for the upper 
surface is given by 

where C, and C, are extracted from the solutions of 
Cl(S) = K , ( @  a s )  + C,(S), (4.3) 

F ( y s )  = 5 (iH2 - g) , 
(4.4) 

respectively. The corresponding receptivity coefficient for the lower surface is obtained 
by replacing 8 by -8. 

The remainder of this section is concerned with calculating rc,(8) and K,(O),  the 
coefficients of symmetric and antisymmetric flow about the nose. These coefficients 
are found by asymptotic matching of the local solution (4.1) for the unsteady slip 
velocity with an appropriate global solution. The nature of this solution depends 
upon the magnitude of the reduced acoustic frequency k = wb/c, where c is the 
speed of sound in the undisturbed medium. Calculation of the velocity field about a 
thin wing, including compressibility effects, is described in Sedov (1965, Chapter 2, 
pp. 87-107). In general no simple expression for the slip velocity can be obtained. 
Here we consider two cases that do lead to relatively simple results. The first case 
is that of extremely low Mach numbers, such that the acoustic wavelength is long 
not only compared to the hydrodynamic length scale, U,/o, but also compared to 
the airfoil chord, i.e. kG1. In this situation the unsteady interaction of the acoustic 
wave with the airfoil can be analysed using the classical unsteady airfoil theory for 
incompressible flow. The second case is that of acoustic wavelengths long compared 
to V,/w but short compared to the airfoil chord, i.e. k + l .  In this case acoustic 
diffraction theory can be used to analyse the interaction. 
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First consider the case k +  1, where incompressible, unsteady airfoil theory applies 
(see for example, Garrick 1957). Since the airfoil semi-chord is the relevant length 
scale for the unsteady aerodynamic interaction, the airfoil thickness can be ignored 
(except in the region of the leading edge, where (4.1) is applicable). Thus, the airfoil 
reduces to a zero-thickness flat plate, and the solution consists of two potential flow 
components: a non-circulatory component, plus a component due to the vorticity 
shed from the sharp trailing edge. The shed vorticity is convected downstream by 
the mean flow and hence takes the form y (x , t )  = 9e'(ax-t) where a = mb/U,  is the 
aerodynamic reduced frequency. The non-dimensional complex potential for this 
unsteady flow is given by 

where [ ( z )  = z - 1 + [z (z  - 2)11/* and lo = [(xo). Applying the unsteady Kutta 
condition then fixes the strength of the shed vorticity, 

27c sin 0 

For matching with the local solution (4.1), the small-.x expansion of the velocity on 
the airfoil surface is required. We find 

where J ( a )  represents the effect of the shed vorticity, 

as x 4 0, (4.7) 

Thus for the high reduced aerodynamic frequencies of interest in the present study, 
the effect of shed vorticity on the unsteady flow in the vicinity of the leading edge is 
smaller than the contribution due to the non-circulatory component, by a factor of 
O ( l / a ) .  Matching with the large-5 limit of the local leading-edge solution (4.1) then 
gives 

The symmetric and antisymmetric components of the local flow past the leading 
edge are seen to be in phase, owing to the incompressible nature of the unsteady 
interaction. Except for values of 8 near 0 and .n, the slip velocity near the leading 
edge is dominated by the antisymmetric component of (4.1), which reaches a peak 
value (b/rn)''2 sin 0 at the nose of the airfoil. Note also that, in this limit, the flow 
about the nose (and hence the receptivity coefficient) is the same for an airfoil with a 
sharp trailing edge as for a body with a rounded trailing edge. 

Next consider the opposite limiting case, k * l .  The acoustic wavelength is then 
short compared to the airfoil chord, and the interaction of the acoustic wave with 
the leading edge can be analysed by taking the airfoil chord to be semi-infinite. As in 
the first case, on the scale of the acoustic wavelength, the airfoil appears at leading 
order as a zero-thickness plate and the problem reduces to the classical Sommerfeld 

Ks = cos 0, K, = all2 sin 0. (4.9) 
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diffraction problem (Noble 1958). The velocity potential for the unsteady flow is given 
by 

sgn(y) 
n(2k)l/2 1, (2 + k cos 6) (A  + k)ll2 

'x: exp(-(1? - k2)1/21y/ - eik(xcos ~ + y  sin O) - sin ; 3 

(4.10) 
which leads to a slip velocity 

(4.11) 
21/2ein/4 

cos 8eikcos8(1 f erfdjj sin ;@- (nk)' /2 

where @ = eC1z/4(2k~)i'2 sin $I. Hence, as x + 0, 

x-l/* + cos B + o(x ' /~)  (4.12) 
21/2e-in/4 

(nk j 1/2 

Matching the slip velocity on the upper surface to the local solution in the vicinity of 
the leading edge, then gives 

(4.13) 

where Me = Ue/c is the Mach number of the mean flow, which has been assumed 
small. The antisymmetric component of the local flow past the leading edge lags 
the incident field (and the symmetric component) by a phase angle n/4, owing to 
the influence of compressibility. The antisymmetric component again dominates the 
symmetric component, except for values of 8 near zero. However, the dependence 
on the incidence angle 6 is fundamentally different than for the case of small k.  The 
anti-symmetric component of the slip velocity has a peak value 2ei" /4(~/n~r , )1/2 sin i 0  
at the nose, a result that depends only on the compressibility of the fluid and not on 
the airfoil semi-chord b. 

In the next section, the symmetric and antisymmetric components, CJS) and 
Ca(S), of the receptivity coefficient are calculated, and sample results are presented 
illustrating the dependence of the receptivity coefficient C1(S j on the incidence angle 
0 of the acoustic wave in the limits k 4 1  and k % l .  

5. Numerical results 
In $3, we utilized asymptotic methods to obtain the non-Blasius generalizations of 

the Lam-Rott asymptotic eigenfunctions, the first of which is the precursor of the 
Tollmien-Schlichting wave. The asymptotic analysis determines the form of these 
eigenfunctions, but not their coefficients C,. It appears that the receptivity coefficient 
C1 for a particular free-stream disturbance can be determined only by numerically 
solving the LUBLE over the full range of 5 and examining the behaviour for large 5. 

In contrast to the flat-plate studies of previous authors, where the mean flow is 
known throughout, in the present study the mean flow, governed by (3.5), must be 
computed as well as the unsteady disturbance, governed by (3.7). The initial conditions 
at = 0, which correspond to the steady Hiemenz flow and its quasi-steady linear 
perturbation, take the form of ODES in q ,  which were solved using a fourth-order 
Runge-Kutta method. The solution was then obtained by marching downstream 
using a Keller Box scheme (Keller & Cebeci 1970) for both the mean flow, given by 
a nonlinear PDE (3.5), and the linearized disturbance equations for symmetric and 
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FIGURE 3. Plot of Q ( t )  = (In f’)-’f’([@’ - F”]/F”)q=O against (In ( ) - l .  

Comparison with the large-< asymptotic form (3.9) yields BI = 2.08. 

-2 

antisymmetric components, (4.4). From the asymptotic form of the eigensolutions, 
it is clear that the growth or decay of the disturbance is very sensitive to the mean 
flow. For this reason, the departure of the mean flow from the Blasius solution was 
calculated rather than the mean flow directly. The value of the unknown coefficient 
B1 in (3.9) can then be extracted from the wall shear. From the asymptotic expansion 
for the mean flow close to the wall (3.11), 

From figure 3, where the above quantity is plotted for real 4, comparison of the 
numerical result with this asymptotic form gives B1 = 2.08. This is somewhat higher 
than the value suggested by Van Dyke (1964b), who estimated B1 = 1.6 - 1.9 based 
on coarse numerical results and on numerical patching of the asymptotic series valid 
near the nose to the series valid far downstream. The computations undertaken in 
the present work extend to much higher values of 4, allowing much more accurate 
extrapolation to fix B1. In addition, the magnitude of the next term in the asymptotic 
series can be estimated from figure 3. By considering the magnitude of the correction 
term at Z 2  = 30, the coefficient of the next term in expansion (5.1) is estimated to be 
approximately 10, which probably explains the under-estimation of Van Dyke. 

We turn now to the solution for the disturbance. Since the real part of T ( [ )  is 
negative, the first Lam-Rott eigensolution becomes exponentially small far down- 
stream, compared to the Stokes wave. Moreover, since the eigenvalues are inversely 
ordered, the first eigensolution is also exponentially small compared to all the other 
eigensolutions. Thus, it is very difficult to extract the coefficient of the eigensolution 
by direct numerical solution of the LUBLE. A way round this difficulty is to move 
the integration off the real line into the complex [-plane in such a way that the 
eigensolution will gruw exponentially (Goldstein et al. 1983). This will occur if the 
streamwise variable [ is chosen such that -5n/12 < arg [ < -7c/12. The inverse 
ordering of the eigensolutions is also rectified by this process, the first eigenfunction 
becoming exponentially dominant for I +- 1. ‘Peeling OR’ the exponentially growing 
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part of the first eigensolution, that is solving for f = rather than y ,  allows 
the numerical solution to be continued much further downstream while retaining 
accuracy (Heinrich & Kerschen 1989). 

There are essentially two ways of obtaining the receptivity coefficient C1, one based 
on the wall shear and the other based on the oscillating boundary-layer thickness. The 
latter method was used by Goldstein et al. (1983) and Heinrich & Kerschen (1989) for 
the flat-plate analysis. In the present work the two methods gave virtually identical 
results, small differences only arising due to the difference in large-[ extrapolation 
procedure in the two cases. Using the wall shear as the basis for comparison, we 
define 

where f;( = 0.4356(1 + i) (52/2)T'+1. Since the argument of 5 was chosen so that the 
first eigensolution dominates other components of the solution, f - Clyle-T1 ([), and 
hence 

(0) 

as -+ co. Thus in principle, C1 can be extrapolated by plotting the numerically 
obtained value of V(S, 5) against 5-0774. However, this method has serious limitations 
for obtaining highly accurate estimates for C1. Until 5 is extremely large, the sizes 
of the next three terms in the expansion are very close to that of the leading-order 
correction, with the relative magnitudes depending also on S. In addition, the analysis 
of the base flow suggests that bl is quite large, so for larger values of S the exponential 
term cannot be expanded out until i" is very large. Owing to these difficulties, the 
receptivity coefficient for non-zero S cannot be calculated to the same accuracy as for 
the flat plate, the inaccuracy increasing as S increases. In our calculations, we usually 
chose arg 4 = --71/4 which ensures that the rate of growth of the first Lam-Rott 
eigensolution is maximized. In addition, for this angle any error in the numerically 
determined value of B1 enters only the phase of C1 and not the magnitude. For some 
values of S, the solution for arg 5 = -n/3 was also obtained and the extrapolated 
value of C1 was virtually identical, further verifying the numerical work as well as 
the functional form of the eigensolution. The solution was integrated up to 151 = 15, 
except for the larger values of S where it was continued up to 14 I = 20 in an attempt to 
improve the extrapolation. Computation to larger values of 5 becomes progressively 
more expensive due to the presence of the viscous wall layer, the relative thickness of 
which decreases downstream. 

In figure 4, the numerically obtained value of the receptivity coefficient for acoustic 
waves propagating parallel to the airfoil chord, C,, is plotted for several values of 
S. In figure 4(a) it is seen that the magnitude of the receptivity coefficient increases 
slightly for very small S, but decreases rapidly as the nose radius increases further. 
For S = 0.3, the receptivity is reduced to approximately 15% of that for a flat 
plate. The decay of IC,( appears to be exponential in S, though this has not been 
verified analytically. For S < 0.1, the results for JC,I are estimated as accurate to 2%, 
while the accuracy for S = 0.3 is only about lo%, owing to the difficulties discussed 
above. However, the large relative uncertainty for the latter case is of little practical 
importance, since the receptivity is so low by this stage. The small increase in the 
parallel-wave receptivity seen for very small values of S is in agreement with small-S 
asymptotic theory which will be reported elsewhere (Hammerton & Kerschen 1996a). 
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FIGURE 4. Variation of the receptivity coefficient as a function of Strouhal number, S ,  for an 
acoustic wave in the free stream propagating parallel to the body axis: (a )  the amplitude of the 
receptivity coefficient (C,(S)(  ; (b)  the phase of the receptivity coefficient arg(C,,)/.n. 
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Figure 4(b) shows the change in the phase of the receptivity coefficient as S increases. 
The increase in arg(C,) corresponds to a lag in phase of the instability wave. 

As we have already noted, computation must be carried out to large values of 5 for 
accurate determination of the receptivity coefficient, since the eigensolution tends to 
its asymptotic limit slowly. However, the ratio of receptivity coefficients for different 
free-stream disturbances can be evaluated accurately at only moderately large values 
of t, since the same asymptotic behaviour of the eigensolution arises whatever the 
form of the free-stream disturbance. In the present paper, we consider only the 
effect of acoustic waves at oblique angles. In figure 5, the receptivity due to the 
symmetric and antisymmetric components of the free-stream disturbance is compared 
for different nose radii. We define A = C,/C,, where C, is the receptivity coefficient 
related to the antisymmetric component of (4.1). In figure 5(a), IAl is plotted as a 
function of S .  We see that lC,l is larger than IC,l by approximately a factor of six in 
the flat-plate limit S + 0, where the antisymmetric component of the slip velocity has 
a square-root singularity at the leading edge. The value of 1A1 decreases rapidly as a 
finite nose radius is introduced, relieving the singularity at the leading edge. Thus, the 
behaviour of C ,  for very small S is quite different from that of C,, where a small rise 
in magnitude was seen. The sharp change in A for small S suggests the appearance 
of singular behaviour in the small-S expansion, in contrast to the behaviour seen in 
figure 4 for the parallel-wave case. Beyond S = 0.05 the decline in lAJ becomes more 
gradual, the value of lAl remaining above 2.5 right out to S = 0.3. For all values of 



Boundary-layer receptivity for  a parabolic leading edge 26 1 

0 0.1 0.2 

I I I I 1 I 

0.2 

0.1 

0 

F I G U K ~  5. Comparison of the relative receptivity due to symmetric and antisymmetric components 
of an oblique acoustic wave, A = CJC,: (a)  the magnitude of the relative receptivity, IAl; ( b )  the 
phase, arg(A). 

S examined, the antisymmetric component of the slip velocity was found to be more 
effective than the symmetric component in generating a Tollmien- Schlichting wave. 

The phase difference between the C, and C, is plotted in figure 5(b). It is interesting 
to note that as S t 0, arg A t n/4. For reasons given above, A can be calculated 
very accurately, and this result is true to an accuracy better than 0.1%. However, the 
fundamental reason for this result is not clear. Arg(A) initially drops rapidly as a 
finite nose radius is introduced, then remains roughly constant from S = 0.05 out to 
S = 0.3. The positive values of arg(A) correspond to a phase lag for the contribution 
from the antisymmetric component of slip velocity, relative to the contribution from 
the symmetric component. This phase lag may be related to the fact that the 
antisymmetric component of the slip velocity takes on its largest values near the nose, 
while the symmetric component takes on its largest value farther downstream. The 
concentration of the antisymmetric component near the leading edge is particularly 
pronounced in the limit S t 0, where arg(A) takes on its largest value, the slip 
velocity being singular at 5 = 0 in this case. 

The variation of the total receptivity coefficient C1 with acoustic wave incidence 
angle is illustrated for the case k <  1 in figure 6. A representative aerodynamic reduced 
frequency, a = 10, has been chosen, and results are plotted for two nose radii, 
S = 0 and 0.2. The receptivity for the flat-plate case ( S  = 0) is dominated by the 
contribution from the antisymmetric component, causing the shape of the plot for 
lC1/ to be quite close to sin8, except in the vicinity of 0 = 0" and 180" where the level 
is determined by the symmetric component. The case a = 10, S = 0.2 corresponds 
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FIGURE 6. Variation of 1CI with acoustic incidence angle 0, for k Q 1  and non-dimensional 

chord length a = 10. The solid line is for S = 0, the dotted line S = 0.2. 
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FIGURE 7. Variation of IC/ with acoustic incidence angle 0, for k + l  and M = 0.1, and the same 
values of S plotted in figure 6. 

to a typical airfoil design. The overall receptivity level for S = 0.2 is smaller than 
for the flat plate, due to decreases in both (C,I and (C,\. Since the finite nose radius 
causes a larger decrease in C ,  than C,, the influence of the symmetric component of 
the free-stream disturbance is somewhat larger in this case. The peak receptivity for 
S = 0.2 is roughly one-fifth that for the flatplate. 

The variation of the total receptivity coefficient C1 with incidence angle is illustrated 
for the case k + l  in figure 7. A representative Mach number M ,  = 0.1, has been 
chosen. The dependence of the receptivity level on acoustic wave incidence angle 
is very different from the case k4l illustrated in figure 6. The flat-plate result 
is again dominated by the contribution from the antisymmetric component of the 
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free-stream disturbance, but the plotshape resembles sin i0, except near 0 = 0" 
where the symmetric component determines the level. As before, for S = 0.2 the 
overall receptivity level is decreased, but the relative contribution from the symmetric 
component of the disturbance is somewhat larger. 

6. Conclusion 
Boundary-layer transition is influenced both by the stability properties of the 

boundary layer, and by the characteristics of the free-stream disturbances and the re- 
ceptivity of the boundary layer to these disturbances. The present work has examined 
the influence on leading-edge receptivity of the nose radius of an uncambered airfoil 
symmetric mean flow, in the low Mach number limit. 

Leading-edge receptivity involves a gradual evolution of the boundary-layer dis- 
turbances with downstream distance, eventually leading to a growing Tollmien- 
Schlichting wave. The receptivity coefficient is essentially the amplitude of the 
asymptotic eigenfunction which is the precursor of the Tollmien-Schlichting wave. 
It is the receptivity coefficient which contains all the relevant information about the 
free-stream disturbance. The decay rate of the asymptotic eigenfunction, like that of 
the Tollmien-Schlichting wave, is influenced only by the mean flow. One of the most 
important properties is the pressure gradient parameter, 8. For symmetric flow past 
a parabola, 

where S is the Strouhal number, S = wr,/U,. Thus, the pressure gradient is 
everywhere favourable, decreasing monotonically from its maximum value at the 
stagnation point and approaching zero far downstream. Well downstream of the 
nose, the favourable pressure gradient has a stabilizing influence on the boundary 
layer, leading to increased damping of the Tollmien-Schlichting waves and of the 
precursor disturbances. In addition, the stronger pressure gradient close to the nose 
has an effect on the receptivity coefficient. As the nose radius of the body is increased 
(i.e. S increased), the strongly favourable pressure gradient near the nose extends over 
a larger number of disturbance wavelengths, and this additional stabilizing influence is 
likely to result in a decrease in the receptivity coefficient. Numerical calculations show 
that the symmetric component C, of the receptivity coefficient decreases rapidly with 
increasing S, dropping to approximately 12% of the flat-plate value when S = 0.3. 
The antisymmetric component C,  decreases even more rapidly, dropping to 5% of 
flat-plate value when S = 0.3. The total receptivity coefficient C1 is much larger for 
oblique acoustic waves than for parallel acoustic waves, since the coefficient ~ ~ ( 8 )  
that multiplies the antisymmetric component C, is large compared to the coefficient 
~ ~ ( 0 )  that multiplies the symmetric component C,. 

While the detailed asymptotic analysis depends on the exact geometry of the 
leading edge, the rapid decrease in receptivity with increasing nose radius should 
also be valid for other streamlined bodies. However, symmetric mean flows past 
leading edges less streamlined often involve regions of adverse as well as favourable 
pressure gradient close to the nose. For such bodies, it is possible that an increase 
in leading-edge thickness could lead to an increase in the receptivity coefficient. For 
an airfoil at an angle-of-attack, both favourable and adverse pressure gradients exist 
in the neighbourhood of the nose. Analysis of the receptivity in this case will be 
presented in a future paper (Hammerton & Kerschen 1996b). 
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Comparing the asymptotic analysis presented here with numerical and experimental 
results is difficult. Numerical work by Murdock (1981) for a parabola in a flow with 
a parallel acoustic wave also showed a decrease in receptivity as the nose radius 
was increased. The computations of Lin, Reed & Saric (1992) were for parallel 
acoustic waves incident on half-ellipse leading edges connected to a flat plate and for 
super-ellipse leading edges (which avoid the discontinuity in curvature), geometries 
chosen to match the experiments of Saric, Wei & Rasmussen (1994). For both 
these geometries there are regions of adverse pressure gradient near the leading edge, 
as well as the possibility of additional localized receptivity mechanisms (Goldstein 
1985); hence no direct comparisons can be made with the present results. In addition, 
the receptivity level ‘seen’ in experiments and full Navier-Stokes calculations is a 
combination of the receptivity process described in the current paper, and the stability 
characteristics farther downstream. For the flatplate, Goldstein (1983) provided the 
asymptotic analysis of the triple-deck region and thus (in theory) could calculate 
the disturbance amplitude at the lower branch. Reproducing such an analysis for 
a general airfoil surface would provide little additional physical insight concerning 
the receptivity process. By restricting attention to the region in which forcing by 
the free-stream disturbance occurs, the process of receptivity is isolated from the 
instability phenomena that occur farther downstream. For a global picture of the 
transition process, the current analysis provides an upstream boundary condition for 
linear stability analyses. 

This work was supported by NASA Langley Research Center under grant NAG- 
1-1135 and Air Force Office of Scientific Research under grant 90-0065. 

Appendix A. Evaluation of integrals involving airy functions 
Here we obtain alternative expressions for the integrals J;, defined by 

Ji = lom [z - zo]‘Ai2(z) dz, 

where Ai’(zo) = 0. Setting w = Ai2(z) ,  this satisfies 

w‘” - 4zwf - 2w = 0 (A 2) 

(Abramowitz & Stegun 1965, equation 10.4.57), and hence 

~ ( z ’ )  dz’ = --;(\v” - ~ z w ) .  

Thus JO(zo) follows, noting that w’’(z0) = 2zoAi2(zo). The other integrals J ,  are then 
obtained by successive integration by parts, 
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Hence, 

JO = -zoAi2(zo), 

J = -2 ,  
I 3 O J O ,  1 

2i i(i - l ) ( i  - 2 )  
J .  1 -  - + 2 i z ~ J i - ~  + Ji-3, i 2 3. -- 

2( 1 + 2i) 

Appendix B. Matching of asymptotic eigenfunctions to 
Tollmien-Schlichting modes 

As the wavelength of the asymptotic eigenfunctions of the linearised unsteady 
boundary-layer equations progressively shortens with distance downstream, an outer 
inviscid layer begins to interact with the wall viscous layer. This occurs when 
< = O(E-').  Writing = e l ,  we anticipate the rapid variation of y' by writing 

ly' = G(y, t )  exp (i 1 k dele3) (B 1) 

where the scaling is dictated by the need to match back to (3.17) as g -+ 0. As in 
the LUBLE regime, the exponential streamwise variation k ( Z )  is determined as an 
eigenvalue from the matching between the different layers. In the Orr-Sommerfeld 
region, the main deck (y = O(1)) is matched to an outer irrotational layer (y = O(e-l)) 
and to the inner viscous layer (y = O(e)).  When 5 = O(t.-l), the classic triple-deck 
scalings arise and the effect of the outer layer enters the expression for k at leading 
order. In the present investigation, k ( g )  was determined using direct matching of the 
stream function between the decks, rather than by trying to modify standard Orr- 
Sommerfeld results to include wall curvature and mean pressure gradients effects. 

Details of the matching are not included here, but an implicit expression for k ( 2 ,  E )  

is eventually obtained, 

where 

and 

Here z = p/Uh and Ti are numerical constants involving integrals of the mean flow 
through the boundary layer, given by Goldstein (1983, equations 4.444.45). Solving 
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(B 2) for zo(t, e )  gives 
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where 50 - ZOO + ezol + e2z02 + O(e3 lnc) is the flat-plate result, and 

Here we have written y and r in terms of 5 rather than 
finally obtain 

for conciseness. Thus we 

n2 -312 where it = e3IKl45 2, /Uh is the flat-plate result. 
The leading-order term in the small-e expansion of I. is given implicitly by 

Q<zOO, = z3, (B 6 )  

which has a set of roots zg(g) .  As + 0, z t i  -+ -pL, where p 2  is defined in $3, namely 
the ith root of Ai’(-p) = 0. The set of roots k(” (E)  then follows from (B 5) .  As g -+ 0, 

and hence 

which matches to the exponential variation of the eigenfunctions of the LURLE region 
(3.17). Numerical solution of Q(zm) = t3  shows that as increases, the imaginary 
part of the leading-order term in k(‘) stays positive for i = 2,3,. . ., corresponding to 
damped modes, but that Im(k(’)) < 0 for z > 3.03, which corresponds to a growing 
wave. Thus we have demonstrated that the first LUBLE eigenfunction does indeed 
match on to the unstable Tollmien-Schlichting mode. Moreover, (B5) can be used 
to calculate the change in the position of the neutral stability point compared to the 
flat-plate case. 
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